WORKSHOP ON SOLUTIONS FOR THE ENERGY AND ENVIRONMENTAL SUSTAINABILITY OF PORT AREAS: A PILOT ACTION FOR PORT OF TRIESTE

# Study and research to enable cold ironing: approach and discussion





Lab of Grid Connected and Marine Electric Power Generation and Control Giorgio Sulligoi gsulligoi@units.it Daniele Bosich dbosich@units.it

Consiglio regionale, Trieste March 9th 2018

# Summary

- Cold Ironing
- Starting point (single terminal)
- Design review (route)
- Aim of the study

Installation Costs Environmental Costs Running Costs Costs for Ship Owners

- EGREBUTY: Electrical GRid for grEen BUsiness continuiTY
- Conclusions



# Emissions at berthing

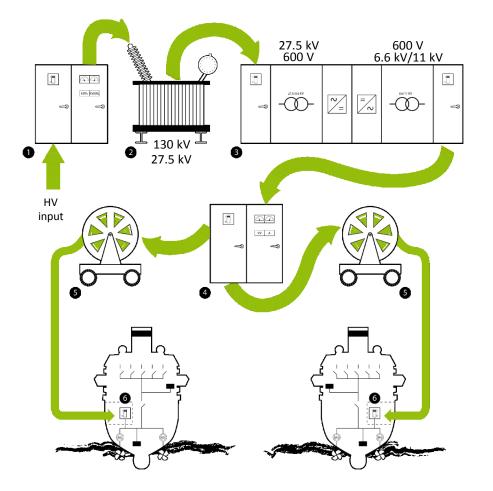
 Standard berthing (marine bunker fuel) is a very polluting activity



| Duration | Fuel Tons | Kg NO <sub>x</sub> | Kg SO <sub>2</sub> | Kg CO <sub>2</sub> | Kg VOC | Kg PM <sub>10</sub> |
|----------|-----------|--------------------|--------------------|--------------------|--------|---------------------|
| 1h       | 2,47      | 120                | 130                | 786                | 10     | 20                  |
| 16h      | 39,5      | 1920               | 2080               | 12576              | 160    | 320                 |

Cruise ship emissions (80.000 ton GT ≈Costa Mediterranea)

- $NO_x$  emissions for 8 h berthing (12MW) = 10.000 Diesel Euro V TS Berlin
- 100.000 ships in 4.500 main ports (900·Mton CO2) ≡ 220 coal power plants



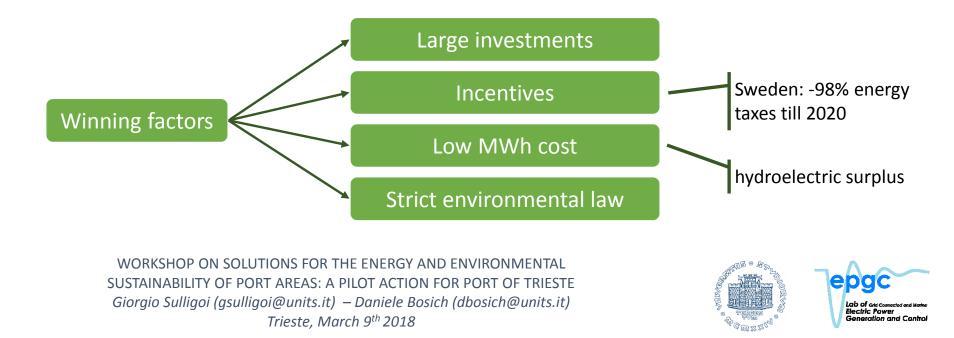

# A possible solution: Cold Ironing

- Supplying the ship from the port electrical grid (HV shore connection)
- Operation time: from 15 to 45 minutes
- Standard IEC 80005-1: High Voltage Shore Connection (HVSC) Systems
  - from 1MW
  - from 1kV to 15kV AC (HV)
  - ship bus voltage: 6.6kV or 11kV (60Hz)
  - power for energy-consuming cruise: minimum 16 MVA, recommended 20 MVA



## A possible solution: Cold Ironing





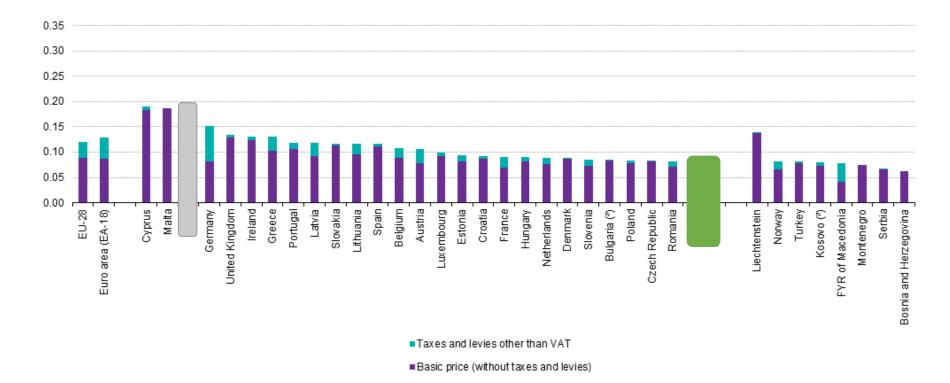





# State of the Art – America and North Europe

 Mature technology for 20 years: Jeneau (16,2MVA), Seattle (16,2MVA), Vancouver (20MVA), Los Angeles (20MVA), Long Beach (20MVA), Goteborg (1989), Antwerpen, Helsinki, Stockolm...




## State of the Art – South Europe

• Lots of projects (Genova, Venezia, Barcellona...), but few installations





## MWh cost in Europe



(1) Annual consumption: 500 MWh < consumption < 2 000 MWh. Excluding VAT.

(<sup>2</sup>) Provisional.

Source: Eurostat (online data code: nrg\_pc\_205)



#### Starting point: the Port of Trieste

W

#### Strenghts

- important port
- deep sea bottom
- many industries in maritime field
- wonderful cruising terminal
- expected cruising terminal upgrade
- community sensibility (environment)
- increasing tourism
- technical/scientific know how

#### Weaknesses

- MWh cost
- cost for the electrical infrastructure
- for HV: cable duct realization
- need of an intensive cruising terminal use
- need of ship retrofitting

#### **O**pportunities

- available technology
- electrification of Porto Vecchio
- European funds
- new investments/opportunities
- international legislation support
- ports cluster for maintaining stops
- health disease reduction
- air quality improvement
- noise reduction
- electrification of transportation

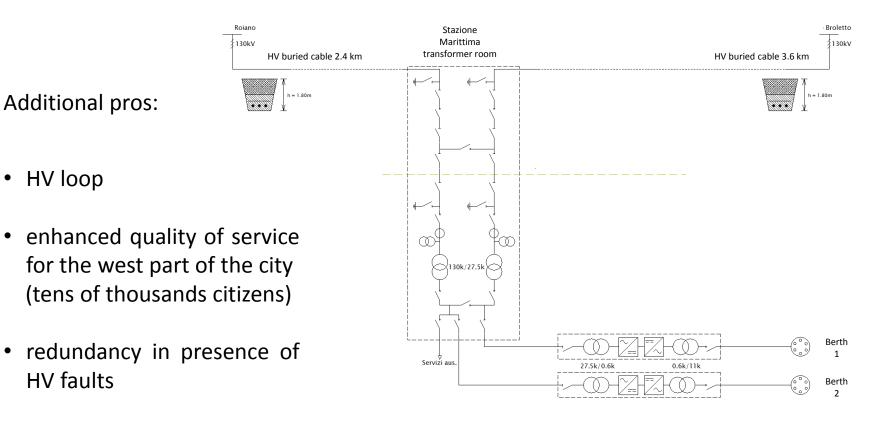
#### Threats

- few national funds
- absence of Mediterranean SECA areas
- low investments due to economical crisis
- time-consuming bureaucratic procedure
- politics susceptibility
- competition with large-close ports
- uncertainty in tourism flux



Electric Power Generation and Contri

# Starting point


Costs-benefits analysis for the Stazione Marittima HVSC:

- 2 berths of 20MVA (HVSC1 and HVSC2)
- Suitable for an increasing cruise transport
- 130 kV loop from Valmartinaga (1) to Broletto (3)
- New transformer room in Stazione Marittima (2)
- 2 conversion systems (AC/DC + DC/AC)
- Total cost VAT included: about 30 M€





#### Starting point HVSC Power System for Stazione Marittima



WORKSHOP ON SOLUTIONS FOR THE ENERGY AND ENVIRONMENTAL SUSTAINABILITY OF PORT AREAS: A PILOT ACTION FOR PORT OF TRIESTE Giorgio Sulligoi (qsulligoi@units.it) – Daniele Bosich (dbosich@units.it) Trieste, March 9th 2018

HV loop

HV faults

•

•



## Estimate of the Infrastructure Costs

| Element                      | N    | Unity cost € | Total €    |
|------------------------------|------|--------------|------------|
| HV Delivery (SF6)            | 2    | 900.000      | 1.800.000  |
| HV Cable                     | 6 km | 1.700.000    | 10.200.000 |
| HV Switch                    | 5    | 90.000       | 450.000    |
| HV/MV Transformer            | 2    | 300.000      | 600.000    |
| MV Switch                    | 6    | 16.000       | 96.000     |
| 20 MVA<br>Conversion Systems | 2    | 4.000.000    | 8.000.000  |
| Link                         | 1    | 150.000      | 150.000    |
| Designing Costs              | 20%  |              | 4.259.200  |
| VAT                          | 22%  |              | 5.622.100  |
| Total                        |      | $\langle$    | 31.177.300 |

| 12.450.000€ + VAT (2.739.000€)       |
|--------------------------------------|
| may be shared among DSO and          |
| TERNA till the 50% (public interest) |
| 15.730.000€ + VAT (3.459.000€)       |

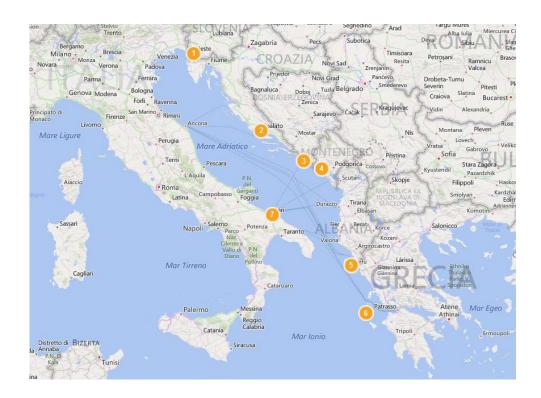
is up to the applicant (port) for the only shore connection





# Aim of the Study

- To calibrate the starting design on the actual terminal needs
- To identify some points for evaluating the long-term HVSC feasibility
  - Design review
  - Environmental externalities
  - ➢ Running costs
  - Costs for ship owners
- Never only one port (Trieste), but an entire area (Adriatic-Ionian, Mediterranean)




# Design Review (route)

The study is not limited to Trieste area, but it regards a cluster of ports (cruise lines).

#### Why?

- 1. Area point of view, not limited to a single terminal
- 2. Electrified route to justify the ship owner expenses
- Green energy!
   Hydroelectric → Kotor
   PV → Bari
   Wind → Greece





# Design Review (Installation costs)

- 2 (20 MVA) berths are overmuch: only 1 berth HVSC1 (16MVA $\rightarrow$  new ships)
- During the installation of HVSC1, also HVSC2 requirements are taken into account

| Element                     | Ν   | Unity Cost € | Total €    |                                    |  |  |
|-----------------------------|-----|--------------|------------|------------------------------------|--|--|
| HV/MV Transformer           | 2   | 300.000      | 600.000    | 7.760.000 + IVA (1.708.000€)       |  |  |
| MV Switch                   | 6   | 16.000       | 96.000     | up to the applicant (port) for the |  |  |
| 16 MVA<br>Conversion System | 1   | 3.450.000    | 3.450.000  | only shore connection              |  |  |
| Link                        | 1   | 150.000      | 150.000    |                                    |  |  |
| Designing Costs             | 20% |              | 3.470.000  |                                    |  |  |
| VAT (also HV supply)        | 22% |              | 4.050.000  | Total with HV supply (previou      |  |  |
| Total (also HV supply)      |     | $\langle$    | 21.177.300 | hypothesis and costs)              |  |  |





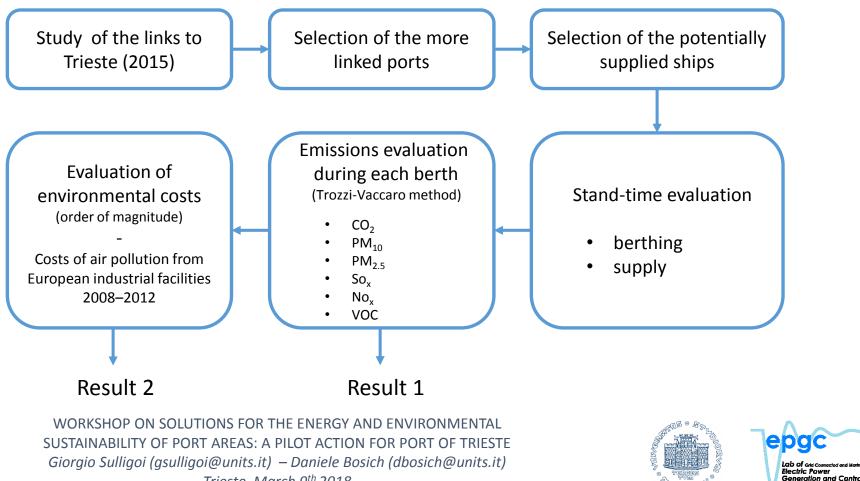
## Environmental Costs

- Environmental externalities (negative): costs (produced by an economical activity) responsible for a wellness reduction. Such costs impact on the community in terms of health expense.
- Lot of studies have evaluated the health-environmental costs given by a polluting quantity
- Pros: estimation of the damage's order of magnitude
- Cons: high level of errors (30%)  $\rightarrow$

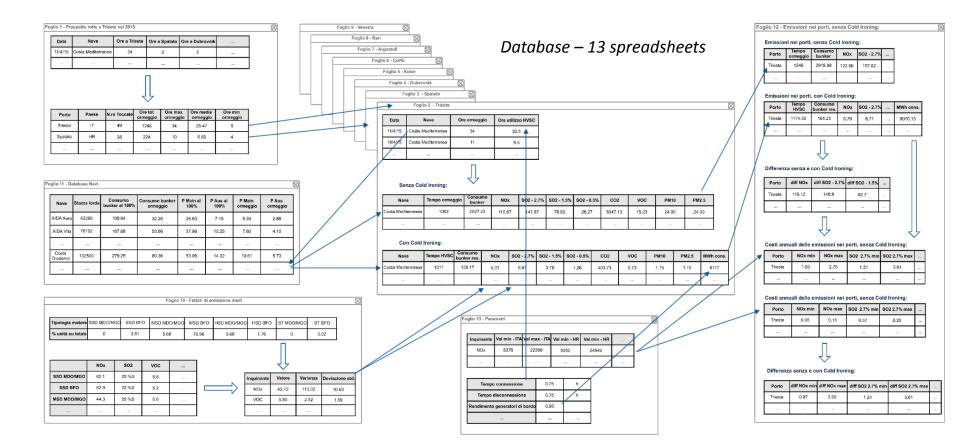
Approximation into emission factors (e.g. kg Sox/ton bunker)

worst case: no dispersive model all emissions are falling down to the ground

• Goal: raise awareness about this issue


WORKSHOP ON SOLUTIONS FOR THE ENERGY AND ENVIRONMENTAL SUSTAINABILITY OF PORT AREAS: A PILOT ACTION FOR PORT OF TRIESTE Giorgio Sulligoi (gsulligoi@units.it) – Daniele Bosich (dbosich@units.it) Trieste, March 9<sup>th</sup> 2018




 $\rightarrow$ 



# Procedure for Estimating the Environmental Costs



Trieste, March 9<sup>th</sup> 2018





### Results - Emissions

How many tons/year of polluting emissions are saved by using HVSC?

| Port      | Hours  | ΔNOx  | Δ SO <sub>x</sub> 2,7% | Δ SO <sub>x</sub> 1,5% | Δ SO <sub>x</sub> 0,5% | ΔCO <sub>2</sub> | Δ VOC | Δ ΡΜ10 | Δ PM2,5 |
|-----------|--------|-------|------------------------|------------------------|------------------------|------------------|-------|--------|---------|
| Trieste   | 567,5  | 52,9  | 67,8                   | 37,7                   | 12,6                   | 4019,5           | 7,3   | 11,5   | 11,5    |
| Split     | 730,0  | 60,9  | 78,1                   | 43,4                   | 14,5                   | 4626,6           | 8,4   | 13,2   | 13,2    |
| Dubrovnik | 2907,5 | 241,5 | 309,6                  | 172,0                  | 57,3                   | 18344,8          | 33,2  | 52,4   | 52,4    |
| Kotor     | 958,0  | 85,4  | 109,5                  | 60,8                   | 20,3                   | 6487,1           | 11,8  | 18,5   | 18,5    |
| Corfù     | 2108,5 | 166,0 | 212,8                  | 118,2                  | 39,4                   | 12611,6          | 22,8  | 36,0   | 36,0    |
| Argostoli | 492,0  | 52,6  | 67,4                   | 37,5                   | 12,5                   | 3995,9           | 7,2   | 11,4   | 11,4    |
| Bari      | 499,5  | 64,3  | 82,4                   | 45,8                   | 15,3                   | 4884,5           | 8,8   | 13,9   | 13,9    |



## Results – Environmental Costs

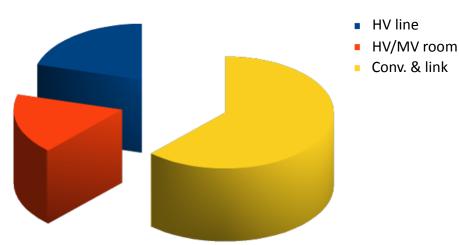
How many M€/year of health/environmental costs are saved by using HVSC?

| Port      | Scenario<br>2.7% | Scenario<br>1,5% | Scenario<br>0,5% |
|-----------|------------------|------------------|------------------|
| Trieste   | 2,39             | 1,95             | 1,58             |
| Spalato   | 1,73             | 1,37             | 1,07             |
| Dubrovn   | ik 6,85          | 5,43             | 4,24             |
| Kotor     | 2,00             | 1,63             | 1,32             |
| Corfù     | 2,30             | 1,92             | 1,61             |
| Argosto   | li 0,72          | 0,60             | 0,50             |
| Bari      | 3,11             | 1,97             | 2,12             |
| Tot clust | er 19,10         | 14,87            | 12,44            |





# Running Costs


- Running costs estimation evaluates the work economical sustainability during the entire life of the plant
- These costs take into account operation, maintenance, employees. Discount rate is assumed negligible
- Data elaborated with DSOs
- What is considered: HV line, main transformer room, converters
- Which is the service life (S.L.): 50Y for the HV line, 40Y per the transformer room, 25Y for conversion systems and link



# Total and Annual Costs

| DSO           |               |                   |               | HVSC manager        |               |                   |               |  |
|---------------|---------------|-------------------|---------------|---------------------|---------------|-------------------|---------------|--|
| Element       | S. L. (years) | Tot. cost<br>(M€) | Cost/year (€) | Element             | S. L. (years) | Tot. cost<br>(M€) | Cost/year (€) |  |
| HV line       | 50            | 2.5               | 50.000        | HV/MV room          | 40            | 0.64              | 20.000        |  |
| HV/MV room    | 40            | 1.42              | 35.000        | Converters and link | 25            | 5.41              | 216.000       |  |
| Total in S.L. |               | 3.92              | 85.000        | Total in S.L.       |               | 6.05              | 236.000       |  |

#### Total cost (DSO+HVSC manager)



- Main cost is up to HVSC manager (both total and cost/year)
- Refundable by means a fee
- Employees operating on the link are largely affecting this evaluation





# Costs for Ship Owners

Estimated by assuming the following hypotheses:

- Fuel consumption: 0,2kg/kWh
- Absorbed power: 16MW e PF 0,85
- 1062 hours of berthing, 1011 hours of possible use (year)
- Marine bunker price: 584.22€/MT without VAT and excise (worst case for HVSC)



#### Economical comparison - marine bunker vs HVSC

• marine bunker fuel

$$C_{NOHVSC} = t_{orm} C_{bunker} Pr_{bunker} = 1062 (0, 2.16) 584, 22 \approx 1.985.400 \epsilon$$

• HVSC

$$C_{HVSC} = (t_{orm} - t_{HVSC}) C_{bunker} Pr_{bunker} + [E_{HVSC} C_{attiva} + E_{HVSC} \tan(\arccos(\varphi)) C_{reattiva}] 1,22 = \\ = (t_{orm} - t_{HVSC}) C_{bunker} Pr_{bunker} + P_{HVSC} t_{HVSC} (C_{attiva} + \tan(\arccos(\varphi)) C_{reattiva}) 1,22 = \\ = (1062 - 1011) (0,2 \cdot 16) 584,22 + 16 \cdot 1011((80 + 60,812) + \tan(\arccos(0,85)) \cdot 8,6) 1,22 \approx \\ \approx 2.932.100 \epsilon$$
  
Energy quote
  
Reactive energy excise
  
WorkShOP ON Solutions for the ENERGY AND ENVIRONMENTAL SUSTAINABILITY OF PORT AREAS: A PILOT ACTION FOR PORT OF TRIESTE

SUSTAINABILITY OF PORT AREAS: A PILOT ACTION FOR PORT OF TRIESTE Giorgio Sulligoi (gsulligoi@units.it) – Daniele Bosich (dbosich@units.it) Trieste, March 9<sup>th</sup> 2018



Lab of Grid Connected Electric Power

Generation and Contro

#### Economical comparison - marine bunker vs HVSC

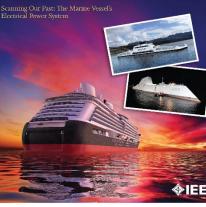
The HVSC solution cost is higher: 1 M€ is the difference. In absence of A3 component (50 €/MWh – renewable energy),

 $C_{HVSC} = (1062 - 1011) (0,2.16) 584,22 + 16 \ 1011((80 + 60,812 - 50) + \tan(\arccos(0,85)) 8,6) 1,22 \approx 1.992.600 \text{€}$ Cost equal to marine bunker case

- No cost for the GSE (new users typology)
- Only an intervention of energy policy!
- Anyway, the cost for installing the systems onboard is to be taken into account: about 1M€ for retrofitting



# Remarks


Relevant technical/scientific know-how

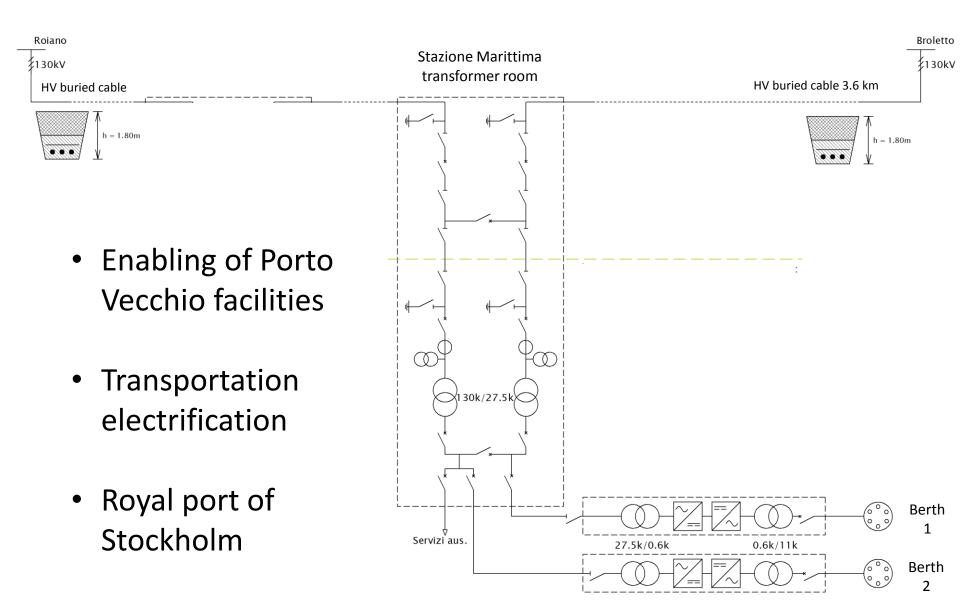
- new electrical infrastructure (HV loop)
- redundancy in presence of HV faults

#### **Proceedings EEE**

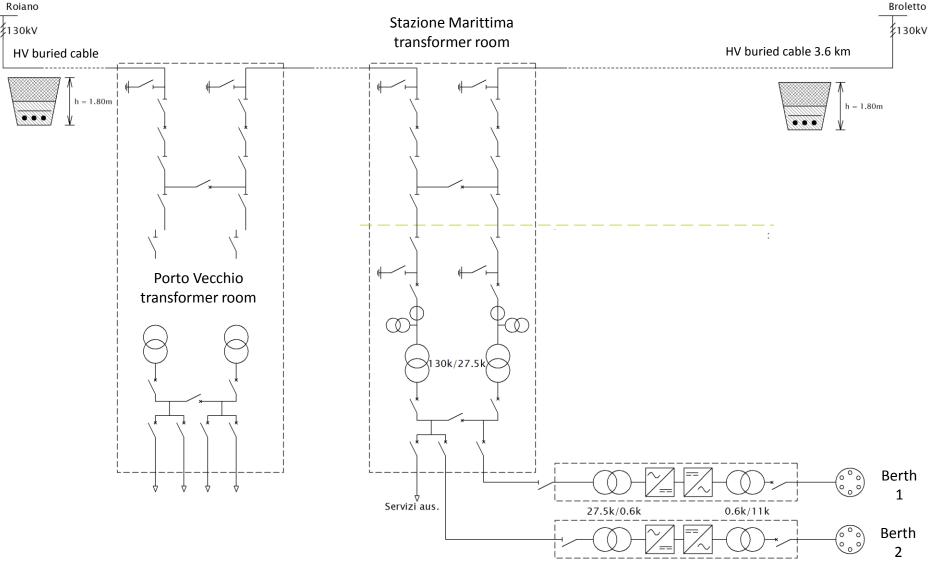
**Electric Ship Technologies** 

ot to Spike: That Is the Question




Sulligoi, G.; Bosich, D.; Pelaschiar, R.; Lipardi, G.; Tosato, F.; "Shore-to-Ship Power" Proceedings of the IEEE, Vol. 103, No. 12, pp 2381 -2400, Nov. 2015.

and last but not least....


enhanced quality of service for the west part of the city













# Needs and Challenges [Porto Nuovo – Trieste]

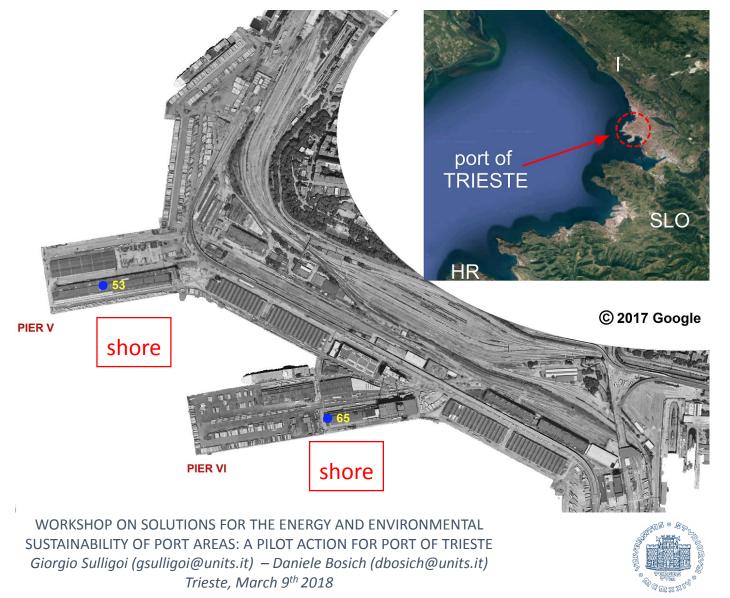
- Transition need: port distribution  $\rightarrow$  port microgrid
  - safety
  - reliability
  - cost-effectiveness
- Advantages enabled:
  - Avoiding black-out eventualities
  - Enhancing/enabling advanced logistic services
  - Decreasing operating costs
  - Decreasing operating time
  - Cutting environmental emissions



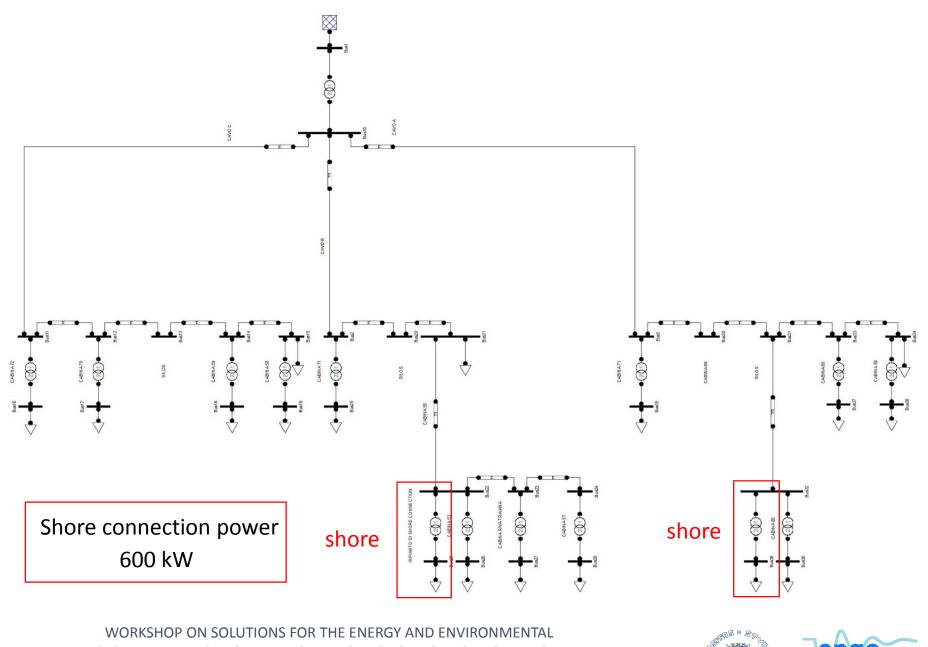


# EGREBUTY [Porto Nuovo – Trieste: UniTS/PTS]

Electrical GRid for grEen BUsiness continuiTY


#### • HOW?

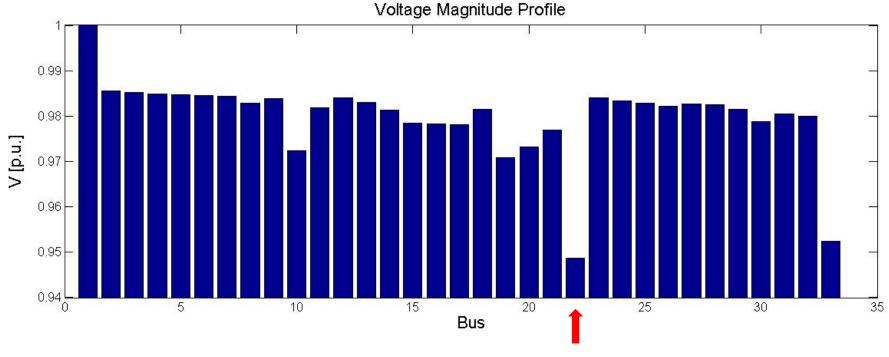
- Electrical distribution system upgrade
- Control system upgrade
- Railway-Docks electrification
- By
  - Analyzing the actual port infrastructure (first stage)
  - Developing a novel grid model (!)
  - Studying the power flows (!)
  - Conceiving Electrical Storage Systems (!)
  - Identifying a cluster of uninterruptible loads (microgrid!)
  - Controlling and re-configuring the microgrid (final stage)






#### First implementation? [Porto Nuovo – Trieste]








SUSTAINABILITY OF PORT AREAS: A PILOT ACTION FOR PORT OF TRIESTE Giorgio Sulligoi (gsulligoi@units.it) – Daniele Bosich (dbosich@units.it) Trieste, March 9<sup>th</sup> 2018







• Power flow analysis

0.948 p.u.

- Voltage profile
- Acceptable dip in the most critical bus



• Pilot project evaluation (TBD): ro-ro ferries IT-TURKEY



## Conclusions

- A cluster of ports has been identified to guarantee a high utilization of HVSC technology: Trieste, Split, Dubrovnik, Kotor, Corfù, Argostoli e Bari
- The ports with more traffic may be promoted
- Overall: -1.650 ton polluting and -55.000 ton CO<sub>2</sub> (cluster/year)
- Lower the emissions, higher the city attractiveness
- Lower the environmental costs, lower the costs for community (health)



## Conclusions

- Infrastructure costs: non only the terminal, but re-infrastructuring a wide area
- Running costs are mainly given by conversion systems and employees

- By adopting the HVSC solution, the cost/year for ship owner are notable (145% of marine bunker solution)
- Such costs are sustainable without the A3 component (= marine bunker solution).



# Conclusions

• Dedicated incentives/de-taxations can make sustainable the HVSC solution

• No conflict with LNG (synergic )

• Energy policy must have the main role in this issue

• Idea of a first feasible implementation (low power) at the Port Nuovo

• Low power pilot project



WORKSHOP ON SOLUTIONS FOR THE ENERGY AND ENVIRONMENTAL SUSTAINABILITY OF PORT AREAS: A PILOT ACTION FOR PORT OF TRIESTE

# Study and research to enable cold ironing: approach and discussion

#### Thank you for your attention!



Consiglio regionale, Trieste March 9th 2018